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Abstract 20	
  

Changes in gene expression during development play an important role in shaping 21	
  

morphological and behavioral differences, including between humans and nonhuman 22	
  

primates. While many of the most striking developmental changes occur during early 23	
  

development, reproductive maturation represents another critical window in primate life 24	
  

history. However, this process is difficult to study at the molecular level in natural 25	
  

primate populations. Here, we took advantage of ovarian samples made available through 26	
  

an unusual episode of human-wildlife conflict to identify genes that are important in this 27	
  

process. Specifically, we used RNA sequencing (RNA-Seq) to compare genome-wide 28	
  

gene expression patterns in the ovarian tissue of juvenile and adult female baboons from 29	
  

Amboseli National Park, Kenya. We combined this information with prior evidence of 30	
  

selection occurring on two primate lineages (human and chimpanzee). We found that, in 31	
  

cases in which genes were both differentially expressed over the course of ovarian 32	
  

maturation and also linked to lineage-specific selection, this selective signature was much 33	
  

more likely to occur in regulatory regions than in coding regions. These results suggest 34	
  

that adaptive change in the development of the primate ovary may be largely driven at the 35	
  

mechanistic level by selection on gene regulation, potentially in relationship to the 36	
  

physiology or timing of female reproductive maturation. 37	
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Transcriptome analysis and life history in a wild primate population 44	
  

Nonhuman primates are valuable sources of insight into human evolution. Until recently, 45	
  

however, such insight was limited by the dearth of genetic resources for most primate 46	
  

species. In addition, studies of primates in their natural habitats, while rich in behavioral 47	
  

and ecological detail, have rarely included extensive genetic or genomic components. 48	
  

This situation is changing now that genomic resources are increasingly available, and 49	
  

gene regulatory studies of captive primates have set the stage (reviewed in Tung et al. 50	
  

2010). However, we still know relatively little about variation in gene expression in wild 51	
  

primates. 52	
  

 53	
  

Collecting functional genomic data on such systems could provide important context for 54	
  

the evolution of gene regulation in humans. Specifically, studying changes in gene 55	
  

expression during maturational milestones in nonhuman primates may provide insight 56	
  

into the loci that contributed to shifts in developmental timing and physiology during 57	
  

human evolution (Uddin et al. 2008; Somel et al. 2009; Gunz et al. 2010). Some 58	
  

examples of these shifts include: relatively late menarche in human hunter-gatherers 59	
  

compared to non-human primates (reviewed in Blurton Jones et al. 1999); a skeletal 60	
  

growth spurt that accompanies female maturation in humans that appears to be absent in 61	
  

nonhuman primates (Bogin and Smith 1996); and short interbirth intervals in humans 62	
  

relative to body size (reviewed in Mace 2000). Circumstantial evidence suggests a role 63	
  

for gene regulation in these changes. Indeed, sequence-based analyses have revealed that 64	
  

the regulatory regions of many development-related genes have undergone positive 65	
  

selection within primates (Haygood et al. 2010) and that rapidly evolving regulatory 66	
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regions near duplicated genes in humans are enriched for genes related to pregnancy and 67	
  

reproduction (Kostka et al. 2010). 68	
  

 69	
  

Yellow baboons (Papio cynocephalus) are close human relatives (~94% sequence 70	
  

similarity: see Silva and Kondrashov 2002) that, like humans, are large-bodied, terrestrial 71	
  

savanna primates with long life histories and non-seasonal reproduction. They also 72	
  

inhabit African savanna environments similar to those relevant for early humans (Potts 73	
  

1998; Behrensmeyer 2006). Yellow baboons have been the subjects of extensive study in 74	
  

the wild (Altmann and Altmann 1970; Jolly 1993; Rhine et al. 2000; Buchan et al. 2003; 75	
  

Wasser et al. 2004; Alberts et al. 2006), including in the Amboseli basin of Kenya where 76	
  

individually recognized baboons have been monitored since 1971 (Altmann and Altmann 77	
  

1970; Buchan et al. 2003; Alberts et al. 2006).  This system therefore presents an 78	
  

exceptional opportunity to integrate functional genomic data sets with detailed life 79	
  

history information about the same animals.  80	
  

 81	
  

Here, we take advantage of life history and behavioral data from the Amboseli baboon 82	
  

population, combined with an unusual circumstance in which we were able to collect 83	
  

fresh tissue from seven known females (four premenarcheal juveniles and three 84	
  

multiparous adults). Six of these seven females died in an episode of conflict with the 85	
  

local human population (the Maasai community in Amboseli) that perceived the baboons 86	
  

as a threat to their livestock; the seventh died of natural causes a few days later. The 87	
  

bodies of all seven females were collected within a few hours of their death, with the help 88	
  

of the Maasai community. We used these data and samples to investigate gene expression 89	
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changes related to the onset of sexual maturity in females, and to examine differential 90	
  

expression in maturity-related genes among genes inferred to have evolved under 91	
  

lineage-specific selection in primates. We focused specifically on expression differences 92	
  

in the ovary, an organ that plays a central role in reproductive maturation. We present a 93	
  

genome-wide analysis of ovarian gene expression changes in these seven female baboons 94	
  

from this natural population using RNA-Seq. 95	
  

 96	
  

Expression differences by life history stage 97	
  

RNA-Seq libraries were made using ovarian RNA from three adult and four juvenile 98	
  

females (Figure S1, Table S1). We obtained ~15 million reads per individual (Table S1) 99	
  

and we measured the expression of a total of 9770 genes in the baboon ovary. Ninety-100	
  

seven genes (~1% of genes in the data set) were differentially expressed between the 101	
  

juveniles and the adults (FDR adjusted p-value < 0.05) (Figure 1). This result is 102	
  

consistent with the expectation that intraspecific differential expression, particularly 103	
  

within a population and within sex, is likely to be less common than interspecific 104	
  

differential expression between different primate species (Babbitt et al. 2010; Blekhman 105	
  

et al. 2010; Xu et al. 2010). Of the differentially expressed genes, 79 were upregulated in 106	
  

the adults and 18 upregulated in the juveniles.  This imbalance in upregulated expression 107	
  

towards the adult females was expected, as the adult ovary is much more metabolically 108	
  

active than the pre-menarcheal ovary (reviewed in McGee and Hsueh 2000).  109	
  

 110	
  

To evaluate the global effect of maturation stage on gene expression variation, we 111	
  

performed a principal components analysis. The first three PCs in this analysis explained 112	
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~67% of variation in the gene expression data (Figure S3). None of these PCs clearly 113	
  

differentiated adult and juvenile tissues, although PC2 exhibited the strongest (albeit 114	
  

nonsignificant) relationship with life history stage (Mann-Whitney test, W = 11, p-value 115	
  

= 0.1143). In contrast, when we examined only those genes that were significantly 116	
  

differentially expressed (n=97), PC1 alone explained 70% of the variation in the gene 117	
  

expression data. PC1 also exhibited a trend towards higher values for juveniles than for 118	
  

adults (Mann-Whitney test, W = 0, p-value = 0.05714 and Figure S3). 119	
  

 120	
  

Little is known about ovarian gene expression in human or mouse models during either 121	
  

the premenarcheal stage or in non-cycling adult tissue, as most studies concerning 122	
  

ovarian gene expression have focused on embryonic sex specification (Nef et al. 2005; 123	
  

Small et al. 2005), fertility disorders (reviewed in Matzuk and Lamb 2008) or cancer 124	
  

states (e.g. Wang et al. 1999; Welsh et al. 2001; Haviv and Campbell 2002; Adib et al. 125	
  

2004). To explore patterns in expression differences between these life history stages, we 126	
  

performed categorical enrichment analyses using the GO (The Gene Ontology 127	
  

Consortium 2000) and PANTHER (Mi et al. 2005) ontology databases. The enrichments 128	
  

were performed in two ways: first, using the absolute rankings of gene expression 129	
  

differences between adults and juveniles, regardless of the direction of the difference; and 130	
  

second, using only genes that were more highly expressed in the more metabolically 131	
  

active adult tissue (Table 1, Tables S2 and S3).  132	
  

 133	
  

Several patterns emerged from these analyses. First, we identified a number of ontology 134	
  

categories generally associated with blood, including “immunity and defense” and 135	
  

 at Princeton U
niversity on February 3, 2012

http://gbe.oxfordjournals.org/
D

ow
nloaded from

 

http://gbe.oxfordjournals.org/


 7 

“angiogenesis” (Table 1). The cortex of the ovary becomes highly vascularized after the 136	
  

onset of maturity (Redmer and Reynolds 1996; Abulafia and Sherer 2000), a maturational 137	
  

process that could account for some of the observed enrichments. In addition, follicular 138	
  

development in the mature ovary is correlated with increased inflammation (reviewed in 139	
  

Bukovsky and Caudle 2008). In keeping with this change, we identified cytokine, 140	
  

chemokine, and macrophage-related immune activities among the significant categories 141	
  

of genes that show increased expression in the adults (Table S3). Secondly, and perhaps 142	
  

unsurprisingly, genes involved in developmental processes (i.e. “developmental 143	
  

processes” and “mesoderm development”) tended to be enriched for differential 144	
  

expression (Table 1 and S2). These enrichments emphasize that the physiological 145	
  

distinctions between the mainly quiescent juvenile ovary and the mature ovary are likely 146	
  

related, at least in part, to differences in gene regulation.  147	
  

 148	
  

At the level of individual genes, we found a significant upregulation in the adult ovary of 149	
  

genes essential for ovarian function and folliculogenesis (Table 2), including genes such 150	
  

as VGF (VGF nerve growth factor inducible), MMP19 (matrix metalloproteinase-19), and 151	
  

ADAMTS1 (a disintegrin and metalloproteinase motif 1) (Figure 2). MMP19 and 152	
  

ADAMTS1 function to remodel the extracellular matrix as follicles develop (Jo and Curry 153	
  

2004; Brown et al. 2010). The role of VGF is less clear, but its essential role has been 154	
  

demonstrated in VGF -\- mice, which produce many primary follicles but few mature 155	
  

follicles (Hahm et al. 1999; Jethwa and Ebling 2008). Fewer genes are upregulated in the 156	
  

juveniles; however, one intriguing example is RSPO1 (R-spondin1), which is known to 157	
  

be critical for early human ovary development and specification (Tomaselli et al. 2011). 158	
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Our data indicate that it continues to be expressed until the stages right before puberty 159	
  

(Figure 2). 160	
  

 161	
  

Changes in gene regulation could reflect differences in alternative splicing and exon 162	
  

usage between juveniles and adults in addition to changes in transcript abundance (e.g. 163	
  

Barberan-Soler and Zahler 2008; Revil et al. 2010). To investigate this possibility, we 164	
  

looked for differential exon expression (FDR adjusted p-value < 0.05) )—a proxy for 165	
  

alternative splicing in a transcriptome without alternative splicing gene models—in genes 166	
  

with more than one exon. Specifically, we identified cases in which at least one exon, but 167	
  

not all exons, were differentially expressed (Table S4). To avoid false positives due to 168	
  

limited power, if one exon was differentially expressed, we relaxed the FDR adjusted p-169	
  

value for differential expression to 0.15. Thus, evidence for exon-specific differential 170	
  

expression required relatively strong evidence for differential expression in at least one 171	
  

exon, and a relative absence of evidence for differential expression in at least one other 172	
  

exon. Twenty-four genes exhibited this pattern, including STC (stanniocalcin) and GCLC 173	
  

(gamma-glutamylcysteine synthetase, catalytic subunit), both of which are thought to be 174	
  

important in ovarian development and function (Paciga et al. 2002; Luderer et al. 2003; 175	
  

Luo et al. 2004; Hoang et al. 2009). 176	
  

 177	
  

Differential expression in the ovary and lineage-specific selection in primate 178	
  

noncoding regions 179	
  

Many of the genes expressed in juvenile and adult baboon ovaries are also likely to be 180	
  

expressed in juvenile and adult ovaries of other primates, including humans. Thus, genes 181	
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that we identified as differentially expressed across life history stages in baboons might 182	
  

be informative for identifying genes important in female life history evolution in humans 183	
  

or in primates more generally. To gain insight into the patterns of natural selection that 184	
  

may have acted on such genes, we therefore integrated the novel functional data from this 185	
  

study with evidence for selection in primates from previous studies.  186	
  

 187	
  

We obtained estimates of positive selection on the lineage leading to humans for protein-188	
  

coding regions from Nielsen and colleagues (Nielsen et al. 2005) and for putative 189	
  

regulatory regions 5 kilobases (kb) upstream of genes from Haygood and colleagues 190	
  

(Haygood et al. 2007). Both studies took a similar approach to identify selective targets: 191	
  

specifically, they compared the rate of nucleotide evolution in the focal region (protein-192	
  

coding regions in Nielsen et al. 2005 and upstream regulatory regions in Haygood et al. 193	
  

2007) to the rate of nucleotide evolution in a nearby region thought to be evolving 194	
  

neutrally (the general approach is reviewed in Yang and Bielawski 2000). An elevated 195	
  

rate of nucleotide evolution in the focal region relative to the nearby neutral region was 196	
  

interpreted as a signature of adaptive change. Likelihood ratio tests were then used to 197	
  

identify cases in which these rates differed across different branches of a species tree; we 198	
  

identified possible targets of lineage-specific selection by locating elevated rates of 199	
  

evolution in protein-coding or regulatory regions that occurred only on specific branches 200	
  

of the tree.  201	
  

 202	
  

Combining our data with results from these studies (Nielsen et al. 2005; Haygood et al. 203	
  

2007), we identified 225 genes that were both included in Haygood et al. (2007) and were 204	
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differentially expressed in this study (p < 0.05 for differential expression; we relaxed this 205	
  

threshold to increase the sensitivity of this analysis). Of these 225 genes, we found 19 206	
  

differentially expressed genes that were associated with signatures of selection in 207	
  

noncoding regions on the human lineage (p < 0.05 for the test for selection). In contrast, 208	
  

we found that none of our differentially expressed genes overlapped with signatures of 209	
  

positive selection in coding regions (out of a total of 35 genes that were differentially 210	
  

expressed in this study and were included in Nielsen et al. (2005)). We did not observe a 211	
  

significant enrichment of ovarian differentially expressed genes among genes with a 212	
  

history of positive selection on the human branch.  However, the target of selection in 213	
  

genes that were both differentially expressed between reproductively mature and 214	
  

immature ovarian tissue, and also exhibited evidence for selection in the lineage leading 215	
  

to humans, was much more likely to have been a gene regulatory region than a coding 216	
  

region (Fisher’s Exact test, p=2.367e-08). If historical selection pressures on these loci 217	
  

were related to female maturation, changes in gene regulation may therefore have played 218	
  

an important role in the evolution of these traits in humans.  219	
  

 220	
  

Genes expressed in reproductive tissue tend to be rapidly evolving, exhibiting signatures 221	
  

of selection in multiple lineages (reviewed in Swanson and Vacquier 2002). We therefore 222	
  

examined whether differentially expressed genes were likely to be members of this 223	
  

rapidly evolving class, or if they were specific to selection on the human branch. We 224	
  

asked whether noncoding regions that appear to have been positively selected on the 225	
  

chimpanzee (Pan troglodytes) lineage (Haygood et al. 2007) were similarly enriched for 226	
  

differential expression. We observed a similar number of differentially expressed genes 227	
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by life history stage that correspond to positively selected regulatory regions in 228	
  

chimpanzees (21 in chimpanzees vs. the 19 seen in humans). Interestingly, ten of these 229	
  

regions are shared between the two species, significantly more than expected by chance 230	
  

(hypergeometric test, p=7.595e-18; Table 3). These results suggest that positive selection 231	
  

on the specific aspects of ovarian maturation controlled by these genes may be a general 232	
  

characteristic of primate evolution. Indeed, genes involved in reproductive and immune 233	
  

pathways that evolved under selection in humans are often also under selection in other 234	
  

primates (reviewed in Vallender and Lahn 2004), and in mammals more generally 235	
  

(Kosiol et al. 2008). Our data suggest that this shared pattern of positive selection may 236	
  

apply to regulatory regions of reproductively important genes as well.  237	
  

 238	
  

Conclusion 239	
  

The timing of female sexual maturity is one of many life history traits that have shifted 240	
  

during primate and human evolution, probably in response to selection. Our results 241	
  

suggest there has been repeated selection on the cis-regulatory regions of some sexual 242	
  

maturity-related genes in multiple primate lineages. These loci are therefore of special 243	
  

interest in relationship to phenotypic evolution during reproductive maturation. Thus, 244	
  

examining the overlap of signatures of selection and differential gene expression from 245	
  

samples obtained from natural populations may serve as a useful filter for identifying loci 246	
  

of particular evolutionary or phenotypic interest. Although such opportunities will be 247	
  

uncommon, they promise to enrich our ability to interpret the phenotypic relevance of 248	
  

sequence-based signatures of selection.  249	
  

 250	
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Materials and Methods 251	
  

Study subjects 252	
  

Samples used in this study were obtained from seven healthy females from the Amboseli 253	
  

baboon population in Kenya (Figure S1 and Table S1), and retrieved within 5-8 hours of 254	
  

death. Tissue was stored in RNAlater (Ambion, Austin, Texas) and transported to -20°C 255	
  

storage in Nairobi within 24 hours. Upon transport to the United States, samples were 256	
  

stored at -80°C. To minimize the effects of cell type heterogeneity in the ovary we 257	
  

sampled from the lateral ovarian cortex. 258	
  

 259	
  

Sample preparation and sequencing 260	
  

Four micrograms of total RNA were isolated for each sample using an RNeasy kit 261	
  

(Qiagen, Valencia, CA)(Table S1), and used as input for the mRNA-Seq 8-Sample Prep 262	
  

Kit (Illumina, San Diego, CA). Libraries were sequenced on an Illumina GAIIx (one lane 263	
  

per sample) at the Yale University Keck Sequencing Core Facility. ~15 million 75 base 264	
  

pair sequences resulted from each lane of sequencing.  265	
  

 266	
  

Baboon gene models 267	
  

The current publicly available baboon genome assembly (Pham_1.0, 20 November 2008) 268	
  

contains 387,373 linear scaffolds with approximately 5.3x coverage of the genome, but 269	
  

has not yet been assembled into chromosomes (http://www.hgsc.bcm.tmc.edu/project-270	
  

species-p-Papio%20hamadryas.hgsc). We mapped the RNA-Seq reads to the subset of 271	
  

these scaffolds (134,448 scaffolds with mean length of 20,246 base pairs) that mapped 272	
  

unambiguously to the macaque genome (Mmul_051212, rhemac2) using lastz (Harris 273	
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2007). Overall, the subset covered 94.9% of the current rhesus macaque assembly. Gene 274	
  

models were obtained by mapping human RefSeq exons to the baboon genome with lastz 275	
  

in Galaxy (Taylor et al. 2007) with a 90% similarity cutoff based on previous estimates of 276	
  

human-baboon sequence conservation (Silva and Kondrashov 2002). 277	
  

 278	
  

Mapping reads, data normalization, and patterns of differential gene expression  279	
  

The RNA-Seq reads were mapped to the baboon scaffolds using bowtie 280	
  

(Langmead et al. 2009). Reads were defined as being within exon models using HTSeq 281	
  

(http://www.huber.embl.de/users/anders/HTSeq/doc/overview.html). Gene counts are the 282	
  

sum of the exon expression counts. The overall distributions of read counts were similar 283	
  

across all individuals and, more importantly, were not different between juveniles and 284	
  

adults, our primary axis of comparison (Figure S2). Both exon counts and gene counts 285	
  

were normalized using the edgeR package (Robinson et al. 2010) in R (R Development 286	
  

Core Team 2008).  287	
  

 288	
  

To evaluate the effect of maturation stage on specific genes, we used a 289	
  

generalized linear model with a negative binomial error structure to model variation in 290	
  

gene expression for each gene. Gene expression counts represented the response variable, 291	
  

and life history stage was modeled as a binary explanatory variable (juvenile or adult). 292	
  

We eliminated seven genes from this analysis that exhibited a significant relationship 293	
  

between gene expression and admixture-related genetic background as well as a 294	
  

relationship with life history stage (admixture between P. cynocephalus and a sister taxon, 295	
  

P. anubis, has previously been documented in this population, and presented a possible 296	
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confounder: Alberts and Altmann 2001; Tung et al. 2008). False discovery rate 297	
  

corrections for multiple comparisons were performed using the Benjamini-Hochberg 298	
  

method (Benjamini and Hochberg 1995) at an FDR of 5% (Figure 1). 299	
  

 300	
  

Categorical enrichment analyses and alternative exon usage 301	
  

To determine functional categorical enrichment for the differentially expressed genes, we 302	
  

employed the PANTHER (HMM Library Version 6.0) (Mi et al. 2005) and GO (The 303	
  

Gene Ontology Consortium 2000) databases and computed enrichment scores using 304	
  

Wilcoxon-rank tests. Our background set of genes was comprised only of genes 305	
  

measured in this study.  306	
  

 307	
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Table 1. PANTHER Biological Process categorical enrichments. Categorical 472	
  

enrichments were performed using a Wilcoxon-rank test. The right-hand column shows 473	
  

the total number of genes evaluated. Categories that evaluated fewer than 10 genes are 474	
  

not shown. Categories in white have a B-H corrected p value < 0.05 (Benjamini and 475	
  

Hochberg 1995), and categories in gray have a nominal p value < 0.05. 476	
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Table 2. Differentially expressed genes (FDR adjusted p-value < 0.05) in the adult and 478	
  

juvenile baboon ovary. 479	
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Table 3. The overlap set of genes that 1) show significant p-values for selection in 481	
  

noncoding regions in both humans and chimpanzees, and 2) also show evidence for 482	
  

significant differential expression by life history stage in the baboon ovary gene 483	
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Table S2. All categorical enrichments using both the PANTHER and GO ontologies of 488	
  

the absolute differences in expression between the juveniles and adults. The right-hand 489	
  

column shows the total number of genes evaluated in that category. Categories that 490	
  

included less than 10 genes total were analyzed but are not shown. 491	
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Table S3. All categorical enrichments using both the PANTHER and GO ontologies of 493	
  

genes ranked by upregulated expression in the adults. The right-hand column shows the 494	
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genes total were analyzed but are not shown. 496	
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Figures 503	
  

Figure 1. MA plot of the normalized data. Each dot represents a single gene, and 504	
  

significantly differentially expressed genes are colored by higher expression levels in 505	
  

adults (red) or juveniles (blue). 506	
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Figure 2. Boxplot diagrams of four representative differentially expressed genes 508	
  

involved in ovarian function and folliculogenesis. Juvenile expression data are in light 509	
  

blue and adult expression data are in dark blue. 510	
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Figure S1. Pedigree of the individuals included in this study. Individuals included are 512	
  

labeled in green, with adult females in dark green and juveniles in light green. Although 513	
  

individuals are closely related, the closest pairs of relatives are in different age classes, 514	
  

making our comparisons between age classes conservative with respect to relatedness. 515	
  

The individual male labeled in white is the unidentified father of VEL.  516	
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Figure S2. Comparison of transcript expression level distributions in the adults and 518	
  

juveniles. To ensure that we were sampling from similar distributions for both the adults 519	
  

and the juveniles, we plotted a density distribution of the mean of normalized count data 520	
  

for the adults (blue) and the juveniles (red) (K-S test, D = 0.1037, p-value = 0.7904). 521	
  

 522	
  

Figure S3. The first three principal components of the normalized ovarian gene 523	
  

expression data. Adults are plotted in blue and juveniles are plotted in red. A) First three 524	
  

PCs using the full gene expression data set. B) First three PCs of only the genes that were 525	
  

differentially expressed between the juveniles and the adults.  526	
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Table 1. PANTHER Biological Process categorical enrichments
PANTHER Biological Process category p-value total occurence

Signal transduction 1.58E-09 1359
Cell surface receptor mediated signal transduction 2.95E-08 558
Cell communication 1.73E-07 435
Immunity and defense 9.16E-07 497
Ligand-mediated signaling 7.77E-06 111
Neuronal activities 4.08E-05 201
Cell motility 0.0003074 151
G-protein mediated signaling 0.0005295 228
Other neuronal activity 0.0008809 64
Cytokine and chemokine mediated signaling pathway 0.001396 74
Developmental processes 0.001563 903
B-cell- and antibody-mediated immunity 0.001653 28
Skeletal development 0.004008 59
Interferon-mediated immunity 0.004157 20
Homeostasis 0.005757 89
Macrophage-mediated immunity 0.00814 34
Cell adhesion 0.008292 252
Extracellular matrix protein-mediated signaling 0.0083 39
Ectoderm development 0.00986 272
Blood circulation and gas exchange 0.01002 21
Neurogenesis 0.01072 250
Mesoderm development 0.01156 251
Cell adhesion-mediated signaling 0.0126 139
Cytokine/chemokine mediated immunity 0.01312 27
Angiogenesis 0.01572 38
Detoxification 0.01719 38
Fatty acid metabolism 0.01925 85
Anion transport 0.0204 25
MHCII-mediated immunity 0.02078 16
Other receptor mediated signaling pathway 0.02398 81
Extracellular transport and import 0.0256 32
Sensory perception 0.02823 96
JAK-STAT cascade 0.02933 30
Natural killer cell mediated immunity 0.03117 11
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Table 2. Differentially expressed genes (FDR adjusted p-value < 0.05) in the adult and juvenile baboon ovary

Table	
  2.	
  Differentially	
  expressed	
  genes	
  (FDR	
  adjusted	
  p-­‐value	
  <	
  0.05)	
  in	
  the	
  adult	
  and	
  juvenile	
  baboon	
  ovary
Gene	
  ID log	
  FC p-­‐value p-­‐value	
  FDR Gene	
  ID log	
  FC p-­‐value p-­‐value	
  FDR
serpina3 5.56053945 2.44E-­‐16 2.39E-­‐12 EPO -­‐2.3597099 6.37E-­‐05 0.01219865
ADAMTS4 5.09716829 5.79E-­‐15 2.83E-­‐11 SLC7A8 2.85383446 6.49E-­‐05 0.01219865
REN 3.98944937 5.39E-­‐12 1.76E-­‐08 ERRFI1 2.13531073 7.99E-­‐05 0.01472884
TFPI2 5.09331391 1.82E-­‐11 3.58E-­‐08 MYOC -­‐4.5033477 8.42E-­‐05 0.0152368
ADAMTS6 4.69173617 1.83E-­‐11 3.58E-­‐08 Mmp1 8.22694892 8.90E-­‐05 0.01581064
Melk 3.76852295 2.12E-­‐10 3.44E-­‐07 rspo1 -­‐2.7082948 0.00010143 0.01769646
LRG1 4.68207316 4.18E-­‐10 5.83E-­‐07 HIF1A 2.20582485 0.00010339 0.01772116
FABP4 9.28927774 3.47E-­‐09 4.24E-­‐06 rpl21 3.86520992 0.0001073 0.01807402
CH25H 3.20323737 1.81E-­‐07 0.00018065 OSMR 2.19076016 0.00011098 0.01837741
SOST -­‐4.8295275 1.85E-­‐07 0.00018065 TIMP1 2.00766916 0.00011652 0.01897307
IL1RL1 9.32559106 3.14E-­‐07 0.0002791 CYP21A2 2.59714864 0.00012208 0.0193343
F3 2.72902443 4.14E-­‐07 0.00033246 PAPPA 3.66989958 0.00012459 0.0193343
RGS2 2.94854719 4.42E-­‐07 0.00033246 Adamts1 -­‐3.7455767 0.0001265 0.0193343
GALNT9 -­‐3.4824072 6.16E-­‐07 0.00042976 Trem1 1.97618174 0.0001301 0.0193343
TNFAIP6 9.06613349 6.82E-­‐07 0.00044438 RAB38 -­‐2.3456431 0.00013012 0.0193343
CRTAC1 -­‐3.1329928 7.44E-­‐07 0.00045431 Sgip1 2.17468855 0.00013061 0.0193343
C19orf26 2.79022659 1.08E-­‐06 0.00062056 DDX21 2.13304855 0.00013343 0.01945687
LdhA 2.80233251 1.91E-­‐06 0.00102984 f2rl1 3.0581654 0.00014459 0.0207748
stc1 2.95769089 2.00E-­‐06 0.00102984 SBNO2 2.8690604 0.00015474 0.02160406
Gdf15 2.63705264 2.61E-­‐06 0.00127693 S100A8 3.74690504 0.00015479 0.02160406
FCER1G 3.18705038 2.77E-­‐06 0.00129071 DST 3.67689535 0.00016231 0.02233414
VGF 3.53951033 3.72E-­‐06 0.00165083 AADAC 7.97969292 0.00016903 0.02293631
MMP19 2.49571312 5.03E-­‐06 0.00213603 CHI3L1 2.26915607 0.00017834 0.0238048
Fosl2 2.56131942 5.46E-­‐06 0.00222307 H6pd 2.1574967 0.0001803 0.0238048
SERPINE1 3.00295543 6.06E-­‐06 0.00226587 ADAMTS16 -­‐2.5741504 0.00018334 0.02388255
S100A9 2.80444185 6.24E-­‐06 0.00226587 HLA-­‐DQB1 3.33877719 0.00019359 0.02488701
ADPRHL1 3.46982396 6.26E-­‐06 0.00226587 CTSG 2.8539012 0.00021891 0.02777611
Cd163l1 2.93708735 7.60E-­‐06 0.00265144 RPF2 2.32131206 0.00022495 0.02817639
socs3 2.49813522 9.29E-­‐06 0.00306778 Cd48 7.59418959 0.00023965 0.02877211
ifi30 2.43485712 9.42E-­‐06 0.00306778 tnfrsf11b 2.68764743 0.0002414 0.02877211
CHGB 2.68694397 1.04E-­‐05 0.00327812 C10orf10 1.97584087 0.00024149 0.02877211
Cntn4 6.69229158 1.41E-­‐05 0.00430415 KCNN4 -­‐8.0092773 0.00024933 0.02934901
Il1r1 2.38670209 1.64E-­‐05 0.00484285 IL8 4.44362712 0.00025339 0.02947116
AG2 7.88467942 1.87E-­‐05 0.00507962 ZFP36 1.96860745 0.00026324 0.02998838
GADD45A 2.30721084 1.89E-­‐05 0.00507962 DLK1 1.87823533 0.00026397 0.02998838
LMO1 2.31100372 1.97E-­‐05 0.00507962 GALR3 -­‐3.0699664 0.00027127 0.0304633
TNFAIP3 -­‐3.1164769 2.00E-­‐05 0.00507962 ANKRD31 7.59845327 0.00027525 0.03055914
ANKRD1 7.90497765 2.01E-­‐05 0.00507962 TRIB1 2.3659021 0.00029898 0.03274912
gpr84 2.20041148 2.08E-­‐05 0.00507962 apol3 2.42154371 0.00030168 0.03274912
NUP35 2.25111635 2.11E-­‐05 0.00507962 PPARGC1A -­‐7.848901 0.00031593 0.03366667
LCNL1 -­‐8.1713233 2.13E-­‐05 0.00507962 PTCHD1 2.54755259 0.00031702 0.03366667
cebpd 2.21602916 2.28E-­‐05 0.00530536 EFNA5 -­‐2.683381 0.00037376 0.03926515
NR5A2 3.01054291 2.37E-­‐05 0.00537637 LGALS3 1.95933307 0.00038655 0.04017603
TMEM49 2.23411164 3.46E-­‐05 0.00767944 c2cd4c 1.86851938 0.00039556 0.04042629
GZMB 4.67164885 3.73E-­‐05 0.00810511 NFIL3 -­‐3.0702127 0.00039723 0.04042629
SLC16A10 6.39312229 4.21E-­‐05 0.00894971 WNT6 -­‐1.9481788 0.0004573 0.04606028
ptgds -­‐2.2794722 4.40E-­‐05 0.00913917 CAMP 7.71716682 0.00047286 0.04714096
HPGDS 8.25515497 5.22E-­‐05 0.01062847 ism1 1.96334052 0.00050099 0.04944076
CD163 2.06718683 5.90E-­‐05 0.01153785
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Table 3. Overlap of genes showing noncoding selection on both the human
and chimpanzee branch that also show evidence of differential expression
by age in the baboon ovary

Gene ID
selection pvalue 
human noncoding

selection pvalue 
chimpazee noncoding

p-value diff. 
expression 
baboons

serpina3 0.0112343 0.0370808 2.44E-16
CHGA 0.01111 0.00016589 0.00831165
LMO1 0.00568249 0.0295031 2.00E-05
OSMR 0.00401283 0.0294791 0.00011098
DRG1 0.0255383 0.052671 0.01727405
CAMP 0.00076639 0.0011117 0.00047286
dusp5 0.00014616 0.0303341 0.02844818
pfkfb3 0.0260481 0.00239918 0.0038824
SCUBE3 0.009715 0.0404337 0.03614428
vwa2 0.0214515 0.0129528 0.0350298
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